PHD STUDENTSHIP PROJECT PROPOSAL

FUNDER DETAILS

Studentship funded by: The Institute of Cancer Research

PROJECT DETAILS

Project title: Targeting RNA helicases to suppress aberrant androgen receptor expression and abrogate persistent androgen receptor signalling in lethal prostate cancer

SUPERVISORY TEAM

Primary Supervisor
- Dr Adam Sharp

Associate Supervisor(s)
- Dr Paul Clarke, Dr Juan Jimenez Vacas, Dr Jon Welti

Secondary Supervisor
- Professor Johann de Bono

DIVISIONAL AFFILIATION

Primary Division
- Clinical Studies

Primary Team
- Translational Therapeutics

Site
- Sutton

ABSTRACT

BACKGROUND: Despite robust responses to abiraterone and enzalutamide which target full length androgen receptor (AR-FL) signalling, patients with advanced prostate cancer inevitably progress to lethal, treatment-resistant, prostate cancer with persistent AR signalling. Mechanisms driving resistance to these treatments include AR gene amplification, AR-FL activating mutations, and AR splice variant-7 (AR-V7) expression, none of which are impacted by currently available therapies. Therefore, novel therapeutic strategies blocking mechanisms driving persistent AR signalling are urgently needed. **HYPOTHESIS:** We hypothesise that specific RNA helicases play a critical role in AR RNA metabolism and provide a druggable therapeutic target to suppress AR-FL/V7 expression and abrogate persistent AR signalling in lethal prostate cancer. **AIMS:** (1) Determine the role of RNA helicases in AR RNA metabolism; (2) Validate RNA helicases as a novel therapeutic target to inhibit AR RNA metabolism and overcome persistent AR signalling in lethal prostate cancer; (3) Evaluate the clinical significance of RNA helicases expression in lethal prostate cancer. **IMPACT:** This innovative research proposal has the potential to develop a novel treatment strategy that could improve the outcome and quality of life for men suffering from lethal prostate cancer.
LITERATURE REFERENCES

CANDIDATE PROFILE

Note: the ICR’s standard minimum entry requirement is a relevant undergraduate Honours degree (First or 2:1).

Pre-requisite qualifications of applicants: Master’s or BSc in Biomedical Sciences (or a related subject)
| Intended learning outcomes: | • RNA analysis (RT-PCR, RNA-sequencing, RIP-sequencing)
• Protein analysis (western blot, proteomics)
• Molecular cloning (site directed mutagenesis)
• Genomic manipulation (siRNA, shRNA, CRISPR)
• Patient derived models (in vivo and in vitro)
• Clinical biomarker validation, development and qualification (transcriptome and immunofluorescence)
• Data analysis and Scientific writing |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVERTISING DETAILS</td>
<td></td>
</tr>
</tbody>
</table>
| Project suitable for a student with a background in: | ☒ Biological Sciences
☐ Physics or Engineering
☐ Chemistry
☐ Maths, Statistics or Epidemiology |