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Project background 

Fragment-based drug discovery has delivered multiple FDA-approved drugs including capivasertib, the first-in-class 
AKT inhibitor co-developed by the ICR, Astex and AstraZeneca. Despite the track record and recent progress in the 
underlying design principles, fragment-to-lead optimisation remains challenging primarily due to two aspects: deciding 
which chemical modifications to pursue among billions of possibilities, and predicting whether these modifications will 
maintain the desired binding to the target protein. This project aims to develop a computational framework ideally 
suited to address both challenges. 

Recent advances in machine learning offer promising solutions to the combinatorial problem, with the development of 
active learning strategies enabling efficient exploration of vast chemical spaces accessible via the rapid expansion of 
purchasable compound libraries. Furthermore, state-of-the-art generative AI models can propose entirely novel 
molecules with desirable properties. Computational methods that can reliably predict which fragment modifications 
will succeed are therefore essential. 

The inherently weak binding affinity (mM-μM) and transient interactions in protein cavities make fragments particularly 
challenging to evaluate using traditional computational methods like docking. However, molecular dynamics 
simulations are often used to investigate the structural stability of protein-ligand complexes. Furthermore, enhanced 
sampling methods such as metadynamics have been shown as reliable tools for assessing binding stability in a limited 
timescale, providing an efficient physics-based approach to evaluate multiple hypotheses. Pose stability metrics (e.g., 
residence time, RMSD fluctuations, and hydrogen bond persistence) will be used to assess whether experimentally 
validated binding modes can be maintained through subsequent fragment elaborations. 

Overall, this project seeks to bridge the gap between fragment hit identification and lead development by introducing 
pose stability as a selection criterion, enabling rational fragment expansion in vast chemical spaces. By integrating 



 
 
 
 

machine learning, generative AI, and physics-based simulations, the approach promises to accelerate the 
development of new cancer therapeutics while reducing costs and improving success rates.  

 

Project aims 

• Evaluate simulation protocols to quantify fragment pose stability, comparing standard and enhanced sampling 
techniques and establishing metrics that predict successful elaborations. 

• Create automated pipelines for pose stability assessments on virtual elaboration pools from commercial 
libraries or AI-generated molecules, with hierarchical filtering to focus physics-based simulations only on 
viable candidates, and validate this framework retrospectively on internal data or published fragment 
optimisation campaigns. 

• Apply this methodology to increase the potency of weak binding fragments against a validated target of 
interest to the Centre of Cancer Drug Discovery; synthesising and testing the molecules. 

• Implement active learning strategy to efficiently navigate the chemical space through iterative subset 
selection, considering reinforcement learning-active learning combinations to further boost sampling 
efficiency. 

• Develop open-source tools integrating pose stability assessment with active learning, enabling community 
adoption for fragment-based drug discovery. 

Research proposal 

Fragment-based drug discovery (FBDD) offers a systematic approach to developing cancer therapeutics and has 
been successfully applied in campaigns leading to FDA-approved drugs (Figure 1). However, optimising weak-binding 
fragments into potent drugs remains challenging. This project aims to accelerate the application of FBDD strategies 
to cancer targets through a novel computational framework that integrates AI and physics-based simulations. The 
framework will be applied to predict fragment hits and their successful elaborations by assessing pose stability and 
leveraging active learning to prioritise promising compounds. This innovative approach addresses one of the 
fundamental challenges in FBDD: selecting elaborations from billions of possibilities that preserve validated 
interactions while improving affinity. We will subsequently apply this to increase the potency of fragment hits against 
a target of interest to the Centre for Cancer Drug Discovery. 

 

Figure 1: The iterative process that lead from a fragment hit 
bound to the oncogenic B-RAF kinase to vemurafenib, the 
first marketed drug from fragment-based drug design. The 
binding site surface is shown in grey, and the space predicted 
to be available for expansion as yellow spheres and surface. 
Figure from de Souza Neto LR et al., Front. Chem. 8:93, 
2020. 

 

Stage 1: Method development and validation 

The first stage focuses on developing and benchmarking 
computational methods that assess fragment pose stability as 
a means of identifying fragment hits. 

We will take validated fragment hits with crystallographic data 
from internal projects or public datasets (e.g., XChem 
screens) and evaluate the ability of different methods to recall 
hits within sets containing inactives or decoys. In particular, 
we will analyse the scope and performance of existing 
computational protocols for pose stability assessments, 
probing their suitability for fragment-sized molecules. 
Different approaches will be benchmarked, including 
standard molecular dynamics and metadynamics-based 
simulations (e.g., BPMD), in comparison to docking. The goal 



 
 
 
 

is to implement and validate a methodology providing an optimal balance between accuracy, hit enrichment and 
computational efficiency. 

We will then build automated pipelines that allow us to assess pose stability following iterative virtual elaborations of 
these hits using commercial libraries. Hierarchical filters will be employed (e.g., pharmacophore matching) to ensure 
selected molecules maintain key fragment features upon elaboration, preventing computational resources being 
wasted on unproductive candidates. Once again, we will test the ability of this approach to select for modifications that 
are known to increase potency. Furthermore, as we increase the molecular size during elaborations, we will assess 
whether pose stability still provides a suitable metric for assessing larger compounds, or if these could benefit from 
more expensive but accurate free energy calculations. An adaptive decision framework will be evaluated to select the 
most appropriate methods based on the optimisation stage, available computational resources, and required 
accuracy. 

This retrospective validation uses well-documented cases from literature where complete data exists from fragment 
to lead candidate, as well as targets from internal programmes with available crystallographic fragment data. This 
provides advantages over published studies in terms of complete structure-activity relationships, consistent 
experimental protocols, and broader access to negative data (i.e., failed elaborations). The validation will allow to 
establish baseline performance metrics and identifies method strengths and limitations. 

 

Stage 2: Application to real-world cancer drug discovery 

In this stage, we will apply our chosen method to increase the potency of a fragment hit on at least one oncology 
target where we have established expertise in terms of assays and crystallography. 

The computational framework will be applied prospectively in cancer drug discovery projects. Using the computational 
approaches established in Stage 1, we will select compounds for synthesis and biological testing, and this will serve 
as the basis to guide further iterations. Experimental validation will be carried out through orthogonal techniques to 
confirm binding and predicted binding modes.  

This prospective validation will demonstrate the framework's real-world utility and provide critical feedback for method 
refinement. Results from synthesised compounds will inform model improvements, with special attention to 
understanding cases where computational predictions diverge from experimental results. 

 

Stage 3: Protocol refinement 

To enable virtual screening of large compound libraries from either commercial suppliers (e.g., Enamine REAL) or 
from multiple chemical elaborations, we will seek to implement active learning approaches to optimise computational 
efficiency. These approaches will balance exploration of novel chemical space with exploitation of promising regions, 
learning to prioritise compounds with favourable features. The implementation will require comparing different 
acquisition functions and their impact on discovery efficiency. 

We will also explore integration with generative models to expand chemical space exploration. Implementations 
combining the active learning framework with reinforcement learning-based generative models (REINVENT4) will 
enable the exploration of novel regions of the chemical space beyond commercial libraries, potentially providing a 
further boost in sampling efficiency. This dual approach, i.e. sampling from commercial libraries and generating novel 
molecules, maximises the chemical diversity available for compound optimisation. 

 

Stage 4: Dissemination 

The final stage focuses on dissemination to the scientific community. We will publish retrospective validation results 
demonstrating the framework's ability to recover known successful elaborations and identify alternative optimisation 
paths. A second publication will present the prospective medicinal chemistry optimisation, including synthesised 
compounds, experimental characterisation, and lessons learned from computational predictions. We will evaluate 
packaging the framework as open-source tools to enable broader adoption of these methods, democratising access 
to advanced computational approaches for FBDD.  

Overall, the developed framework aims to make fragment optimisation more efficient, ultimately accelerating the 
development of new cancer therapeutics. Successful applications will result in multiple high-impact publications and 
pave the way for applying this methodology to novel systems of interest to the ICR and the wider community. 

 

Supervision of the project 

The student will be supervised by Dr. Andrea Scarpino and Dr. Gary Newton (ICR). The student will carry out the 
proposed research within the In Silico Medicinal Chemistry team and the Medicinal Chemistry Team 3 at the Centre 
for Cancer Drug Discovery (CCDD) and benefit from the significant experience in drug design and medicinal chemistry 
in both teams. In addition, the interdisciplinary environment of CCDD will facilitate collaboration with other 
computational scientists, medicinal chemists, and experts in assay and structural biology. For example, the student 



 
 
 
 

will have the opportunity to obtain high-impact intellectual and scientific input from Dr. Rob van Montfort (HDSD Team) 
and Prof. Swen Hoelder (Medicinal Chemistry 4).  
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Candidate profile 

Note: the ICR’s standard minimum entry requirement is a relevant undergraduate Honours degree (First or 2:1). 

Pre-requisite qualifications of applicants:  • MSc in Computational Chemistry, Computer Science 
with chemistry background, Medicinal chemistry, or 
related field 

• Experience with molecular modelling and basic 
understanding of protein-ligand interactions 

• Programming skills in Python and familiarity with 
scientific computing 

• Interest in drug discovery and cancer research 

• Organic chemistry wet-lab experience is desirable 

Intended learning outcomes: • Develop expertise in modern AI/ML approaches for 
molecular design 

• Master molecular dynamics simulation techniques and 
understand their application to drug discovery 

• Gain practical experience in fragment-based drug 
discovery workflows from computational prediction to 
experimental validation 

• Build skills in scientific tool development and workflow 
automation 

• Develop abilities in project management and scientific 
communication 

• Understand the drug discovery pipeline and 
requirements for translational research 



 
 
 
 

Advertising details 

Project suitable for a student with a background in:  Biological Sciences 

 Physics or Engineering 

 Chemistry 

 Maths, Statistics or Epidemiology 

 Computer Science 

 Life Sciences 

 


